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ON TIM, 00 ROTj OF A LINPAR T)lk ^ ^^t1',x10r-T7lI'I^'IiHT^1T'^L
EQUl1TYON W11.11 QUADRATIC COST

Harold J. Kushner

and

Daniel. T. Barney

1. Introduction.

Let H be the space of n-vector valued functions t y(c,")

(yl (cP) )	 ) yn (9) )' on the real finite interval. ,[ -r, 0], r > 0 ) whose com-

ponents are continuo4is on [-r,0]. Suppose x(t) is an n-vector va.11,^ed

function defined on the real interval. [ -r, T3 , T > 0. Fix t e [ 0, T) . Let

xt denote tbe element of H with values x(t+cpN at T, q) e [-r,0]. Get

1	
x(.) be 'the solution of the delay equati.ontt

o
1.	 k (t) =Atxt +Btxt-r +	 ct xt-s ) +lltut

-r

where A(t), B(t), C(t, cp ), B(t) u and the derivatives of B(t) and C(t,,,p)

for (t o p) c [0,T] x [-r,0), and the ' initial condition' ., x ) is in H.

This paper is concerned with finding the control u( • ) which

minimizes the quadratic functional
T

(2) u
V (xt) t) _ [x' (s)M(s)x(s) + u ? (s)N(s)u(s))ds,

t

wLiere M(s)	 and	 N(s) are conti,auous ttt
.9 M(s) ^; 0, and	 N(s) > 0	 for

'The rime	 denotes transpose.P	 '	 p	 e.
fit (1) is treated for simplicity;	 it will be obvious that replacing the

term	 Bx(t-r)	 by BBix(t-r i )	 demands few changes in the development.
t1tM ? 0, N > 0	 denote that	 M	 is non -negative definite end	 N	 is

positive def i ni te.

i
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each ,a in [0,T). Special forms have been considered by other authors,

e. e;. Krasovskii, [1]; however, that work is quite vague and, in partioular,

the crucial, favt that the relevant 'xica.tti. - like' equation has a solution

of the proper form or even some solution is not shown. Since the ► Ricattil

equation is a rather complicated coupled set of first order partial differ-

ential equa
t
ions, this question requires some treatment. Theorems 1. and 2

give the representation of V(xt,t) as a quadratic functional of xt,

Theorem 3 proves the smoothness of solutions to certain partial differential

egliat:i.ons, and Theorems 4 and 5 contain the basic result on iteration in

policy space. Theorem b is the final optimization theorem. Unfortunately,

as is conizion with works on functional-differential equations, some of the

c,i^lculat,ons are somewhat tedious. Although the problem has an intrinsic

interest of its own, ow
i
ng to the appearance of delays in many situations,

the authors interest in it stemmed from an attempt to analyze a, problem

where u(t) was actually a functional, of noise corrupted observations taken

on the interval. [t-•r,t]. 	 This was part of an attempt to use the theory of

stochastic delay equations to study certain approximations to non-linaar

filters, and to stab3.la.ze a system when only noise corrupted observations

are available. The latter investigation led to the consideration of the

problem of the paper. See Barnea [2].

2. A Preliminary Lemma.

Lemu,3 1. ?yet u = 0 and let the A(t), B(t), ZB(t)/2t, dC(t,cp;/at

and C (t,cp) be continuous.,';Zen the solution x(s) has the representation,

for s ?t,

s

J.
J
1

i

l
1
r

R



0
X(S)	 K(et)x(t) AH 1 K(Stq) )x(i>Iq)&p

-r

where K(st) z 0 for s < t,K(t J% t) = I " 
V
..a identity any. K(s t) is con-

tinuov4s J-n (s l t) for s	 t. For fixed t, it satisfies (1), as a

function of s (with u 0). For fixed s ., it satIsfins (as a function

of t) the, ad hint of (1) (with u = 0), for t 5 s. Theme^K(s)t)/as

and	 are continuous for s Z t except for a finite discon-

tinuity at s = t 4• r, Also

r

K ( S ) t, cp) z: K(s j t+r+4p )B(t,1-:V+q)) + f K(s.,t-41+p)C(i--,i<p•l-p,-p)dp.

(The upper limit r can be replaced by min (s-t-T,r).) The first term

on the right of (4) is zero for s < t + r + T, continuous in (s, t,cp )

for s i; t + r + ep, and its derivatives with respect to	 s ) tcp are

continuous for s ^ t + r + y, except at s = t + 2r + q) ) where there is

a finite discontinuity. The second term of (4) is zero for s < t and

is continuous together with its derivatives with respect tot S ) Vp fcr

T a s? t ;t 0 ) - r 99  9 0.

Note. K(st,cp ) = 0 for s < t. For the computations of Theorem

1) it is convenient to redefine K(st,cp) for s <, t so that (3) gives

the solution for s -,! t - r. Then define K̂ (St .,Cp) = 'K" (st,cp) for s ? t

,^
and, for t	 9 s < tP define the symbol 

0
f r K(st,cp)x(t+cp)drp to mean

tBy convention, if s = t + r - + rp, the derivative i, rith respect to s is
a right-hand dorivative, and with roopect -Co t and rp a left-hand
derivative;	 c.., the limits are taken within the segment s ?- t + r +

I

77



4.

x ( s ) i.e., for s <	 is the Dirac 6-function 8(s-(t49)). Thus

for s?t - r,

a
(3')	 x(s)	 K(s,t)x(t)	 j K , t,cp)x(tg ra T—

Proof The forms (3), (4) and statements concerning K(s,t)

follow from Halanay [a], P. 360 -370. The statements concerning K( s ,t,(n)

are straightforward consequences of t17e propej^ties K (s, t), by virtue of

the representation

Remark. In (1) let u(t) take the form

0
(5)	 u(t) = Eu(t)x(t) + j Fu (t O (P)x (	 )#

-r

Then
}	 t

(1^) x(t)
0

Au (t)x(t) + B(t)x,(t-r) + f Cu(tO9)x(t^f-P)
-r

where

Au(t) = A(t) + D(t)R,U(t)

C	 (t,(P) C(t (p) + D(t)F	 t q^).u(^U b

Let	 D(t), Bu (t), F u (t,(p), c)D(t)&--	 and	 d)F'u(t,4^)^ai;	 be continuous.	 Then,
N	 N

Lemma 1 remains valid, where we replace 	 K,K	 by	 KL ,K11 , • resp., the kernels
1

corresponding to	 (1 1 ). •

I

t

a
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Representations for the Cost.

By substituting (5) into (2), we obtain

Vu (xt 
,t)	 fT(xO (s)M

,a ( s)x(s)) ds
t

T	 o	 T	 o
+
 t

ds(f ^X ' (s)Lu(s,m)x($4V)) + f dstf #x' (s^)L1(s,^)x(s))

	

-r	 t	 -r

T	 o	 0
()	 + f ds(f drp f dpx' (s+tp)Gu(s,q,p)x(s+p))

t	 -r -r

T +T +T. +T1

where the Ti are the terms on the right of (6), and

Mu (S) = M(S) + Fu(s)^(s)Lu(s)

(^)	 LU(yp) • Eu(S)N(s)Fu(SOCP)

	

Gu (S,y, p)	 Fu(s,q)N(s)F û
(S I p).

Theorem 1. Let u(t) take the farm (5), and assume the conditions

of Lemma 1 and the remark following it. In addition, let C (t,tp) f ap s;nd

apU (t,(p)/k be continuous and Fu (t,rp) and Eu(t) tend to zero as t —> T.

Let M(s) and N(s) be symmetric and continuously differenti able for

s e (0,T]. Then .*tt

The ;i,Si are defined as the terms on the right of (8).

ttIf (2) contains a'terminal cost term x' (T)Zx(T), then (9), (10), (11) would
each contain one additional term (which is not of an integral form). However,
we have not been able to show that the additional terms have the smoothness
that we will require (i. e. be differentiable).

s

Nag
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x

vu (xto '^'^	 "^ ,^ ► 2 + S2 + $3

A

x I (t)pu(t)x(t) + x l (t)j Qu(t,a))x(t. )dp
—r

Q

()	 + 1 x , (t►q)(i^),p)x(t)
-r

Q	 O
+ j	 f dfwt (t49 )R u (toy) p)x(tfs4P).
-r -r

The PP)o Qu (t )gi), Hu (t,(p j p) are skins of the terms in (9), ( 10 ), (11)0

resp,

T

	

pu1 (t) 	 f KU(s, t)MU (s)Ku(s,t) ds
t
T	 o

f ds ^^ dTKU(s,t)L• u (s,T)Ku (s•^T,t )Nu2(t) 
t	 -r

e

	

Pu3 
(t)	 Fug 

(t)
T	 o	 o

	

pu4 (t)	 f ds f dcP f dpKU(s+kp,t)%(s,cp ,p)Ku(s+p,t)
t	 -r -r

T

	

Q (t,o	 fK' (s,t)Mu (s)Ku (s,t,q))ds 	 fK' ( s , t ) Iqu ( s )Ku (s) t , CP)u1	 t o	 t o 

	

Q 2 (t,)	 fas 	 aTK l (s,t) (s,T)xu(s+T,t,cp)
u	 t	 -r u	 u

min [ t•M r4q, T]

t
T	 o

+ f cis f dTKu(s, r)l,u(s,T)K.(s+T:t)tp)
•	 t	 -r

T	 o

Qu7. (t , cp ) = f d,5 f dTKu(s•'-T, t)Lu(s, r)Ku(sIt,cp)
t	 -r

	

T p	 ti

f ds •f drK.' i ( T,t)L, (s. t')K (s, ^,w)
t	 -r

(9$)

(9b)

•( 94 )

(9d)

(10a)

(10b)

(aoc)

11
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t

i
t

s^

I
^i

T 0	 0
qu)Myp) ` f ds f da f dp. ► 	 E (YO ) (a,,c', p) u ( s •1° , ,(P)

t	 -r -r

T	 o	o,
+ f ds f du f dpX, ( 134 u, *,"U( ,`i,P)W ,(V,+P,t,q))

t	 -r -r

(11a) (t,c, , p) ^: f
T
 I (F, t,q )t ( s )x (, t, p)ds	 f K^ (s, t,e )z (s)K (s, t, )da

ul	
t o
	 u	 ^

T	 o

%2(t
^ p)	

+

f
^ 

ds	 d.^rK (s, t,g1)1ju(^,,r )Ku(g`'',t^ p)
V

yy y+y

 -r

^+yym^.11rt+r+p, T]
(11b)	

f	

!ll^^^ 	
dsx, ( s t,(p)r^u(s,t-s+P)

. f ds f drj^ (,t,(P)Lu(s, ()Ku ( s ^E 'r, t , p)
t	 -r

(lie)	 Ru, (t, cp , p ) = ]RI (t) P) P)

T	 o	 o	 ,.
Rul (t, 4) , p) = f ds f da f d u 	 , (^ r^) u(5'^'

t	 -•	 -r

min t+r4q, t+r+ p, T]

t
m^.n[ ti. r+ p. T]	 o 

dc
ti

(11d)d)	 I	 d5 f r^u ( s•^a,t,^ ) Gu(s)c^,t-s^-p)

min[ t+•rr , T]	 o
+ f	 ds f daGu (s, c,t-s4V)K(s+a)t,p)

t	 -r
T	 o	 0

4, f ds f da f clpKu ( s 'p'a) t)p ) Gu ( s ) a,P) Ku (s+p , t, p)
t	 -r	 -•

r

Furthennore, the T^*

are replaced by P Q and

d.,,rivatives in their arguments

tAt cp = 0 or ^p r or p

are replaced by -the apprrpri a

have the farm (8) where Pu, Qa and Ru

Rui, resp. Pu, Qu, and Ru have bounded

Fort 0$t9T, -r5cp 0, -r9 p90,

0 or p = r' or t = 0, the derivatives
t;e one sided derivatives.



a

r •t^ : * , ,i	 (1P) • 1l1C cit tri v ,Mvcs arc mitw i antio lir'. cxocpL Por the (P

dor l v,M v( or	 wbery there tnr.y bc , it .i` nJ i c— + i -

(MI)	 u(T) x , tlu (T► q)) L. Htt (`r,r`^ n) 1-- 0

(12b) 	 ..,,A1(t)p (t)+P
u (t

) u 	 uA (t),I.Q,(t0	 I	 Q)L	 u	 (to 0) +Qt;,u( 

- iwtM - Pu(t)P (t)ru(t) M -Mu(t)
a w+:

(120)	 2 (t)Cu(t,^p) + Au(t)Qtt(to^l) *	 (t',q')Au(t) `'` 2-.	 ,.

CP

u t^,4r^)

a

Ru (, cps 0) •^•

(., )	 c(, ^)0, (t

t, 1-; P)

..

but ,) u ( ,)	 -F. - (to CP, p)

IRu (^ 	 (t- OlT(t;) p (to p )	 -G (t,q), a)u t	 u	 u

(12e)	 B' (t)Bu (t) r Qu (to -r) = 0

B 1 (t ) qu (to?) - Ru(^,-^',^")	 R^t^%,G^, •r)

I^tna1 ^ the solut ion Pu (t)o Qu (t,cp), Ru (t,cp p) Ls ij^ jq

w1thin the class of symmo ric tt dIfferentiable Pu(t), Ru(t,c,p) and

tFor future r, gfercnce, we note that the d i. scont.intl ty in RU is In the

Urin ^• Ru2 snd Rua. Ho;^tevor, it is easy to verify that Rut and Rua
are cli rfoi-c.nti able in the (1, -•lo -1) direction in the (t s cp P O scat
[0,T) 	 d a 2•

fl I'By syinmotr •i o M wo mo,: ri 1•1' (tr) _ M(t); by cynluietrlv G(t)P)01) ua mean
C (t,cp ) P)	 (r t (to P,cl)) ,

it

g

II

x

..



d:j.ffcrentird,,1.0 Qu (t, fit) .
.s R ....	 ....^ ._- ^.

	

Proof	 `iho cvc liuntion of tiro `1.'i - tomaas on tile rl^;U of (z^) is

^	 7	 ... , r,1^,	 a w s	 r	 n	 n	 ,straightfo ^r.,vira 1,)j me c.l sub., ,.t:i:ng the, express^onc Vor x(s), x(k,-17q))

and x(s+p) fro.ii (^) into the T. and scpa,rating the result into a Sum

I,	 of the form of' the ra,UIjt side of (8), where t1lo Pui , Qui , and Ruh are

given by	 (11). The rielit sides of (9) - (ll) arc obtsinea from

the center expressions by rop1 poing P by its definition in terms o:^ K
N

and the 641)nc:tion, and noting the+.t K (s ) t,i^)	 0 for s C t. Then (^)

foll.o;,rs by merely s%,aaaJng the T^ . The sta.temont conce rnl.ng the con-

tinuity of the derivatives of Pu ) Qu and Ru fo1..l.ow from Theorem j and

the differentI.W.I ty or' M. (s ), xj
u
 (s cp) and G

ll 
(s,cp, p) for 0 < s -!T,

^t 

-r 5 
p̂ 

<. 0, -r 9 p 5 0.

^,. Now, vie ^.,ral.i.aate

at [X` (t)gu(t)X(t)3 - [Au(t)X(t)+B(t)x(t -r) -^^ f Gu(t,`p)x(t+c^)c!cp]Pu(t)X(t)
-r

(13a)	 X'(t)(dEu _)x(t) + x ' 
(t)pu(t)[Au(t)x(t)+B(t)x(t-r)

+ f Cu(t,cp)x(t+q)dcp]
-r

	

o	 tL
. [X ' ('t ) 1 Q (t,(p)x(t-i^p q, a	 a [ 4 (t) f Q(	 )	 ) ]d^	 ^,	 )	 dt x	 u t, - x (^ dT

	

-r	 t-r
0

[Atl(t)x(t)+A(t)x(t-r' I . f 
0

rCu (t,(p X(t•19)]^ ^' Qu (t,t^^), (t•Nr^^)a1n	 3
.. r.

( l b )	 + x' (t) [Qu(t) 0)x(t) _ Qu (t, -r)x(t -r)
a

t c (t, 
-T-t)

t 

e
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c

W,TGr o

(->c )	 — ô x ( T ) d`c _, f `"'"..._.
c ^--•-- -	 - --•---- x (t•VA)cP •

t-r	 -r	 --

im:il C, rly,

d o o	 d t t

a f	 pl,Xt (try<A) ^U ( ,^,,p) : (t". P) 	 d .^	 f dTdQxI (,r)R.(t,p-t,u-t)X(a)
-;r -r	 t-r t-x'

t
(I. d)	 f da[x(t) t Ru (t, o, c•-t) - xt (t-r) Ru (t ) -r, a-t) ]X( a)

t-r

t
4, f drx t ( -r) [R (t, T, 0)x (t) - Ru (t ) T, —r)x(t-r) ]

t-r

-F f t f 
t 

dTdax t ( T ) [ a R (t, T-t, a-t)x(a)
t-r t-r	 u

0
f dp[x t (t)Ru (t,0, p) - x t (t-r)Ru (t, -r, p) ]x(t+p)
-r

0

+ f depx t (t-Hp)[Ru (t,cp,0)x(t) - RU(t,cp,-r)x(t-r)]
.•r

+ f,a f^X I (t4-(P )^ - - a - a R (t cP p)x(t+p)dcpdp.
-r -r

Note (for reference in Theorems 5, 6), that the representations

(13b), (13e), (13d) are valid if Qu (t,cp) only has a uniformly bounded

derivative almost everywhere along each line in the (1, • -l) direction in

the set ep s[-r.03, t c [0,T3. and if Ru (t,q), p) has only a unifo2-ly

bounded derivative almost everywhere along Each line in the

direction in the set t c [0, T], cP; p e [ -r, 0] • 'These conditions and the

d-Ifferentisbi.l-Ity of P'u W assure the differentiability (in t) of V1'(xt,t).
V

t

A

;x
3



Next, uddln, (13a) ) Wice (13b) and (13d), and isiile the substitution (13C),

yields an e4pression for ZO(xt,t)/^t. However, dP(x t t) / ^t also equals

the negative of the simi of the bracketed integrands in (6), evaluated at

s = t. The equality of these two formst of 20(xt t)/c)b for all x t C

and 0 s t 9 T) implies that the coefficients of 111ke terms in x (t ), X(t+q)),

etc., in each form must be equal. This yields (12). Note that, by con-

struction and Theorem 3 1 (12) has a smooth symmetric solution; i.e., the terms

have continuous derivatives and P u (s) = P,,, (s), Ru (t,cp,p)	 Ru (t,p,q)) (except

that the 9,p derivatives of R 
U 

are discontinuous at T p). 

tt
Let P(t), Q	 R(tjcp)^ (t,PP) be differentiable solutions 	 to (12)

,,P (t) P(tTp) symmetric and define Z(xwith P	 t)t) by (14). Then, by re-

versing the argument leading to (12) ., we get d/dt[Z(xt t)] = -xT(t)M(t)x(t)

U t (ONNU(t).

[X, (t)A 	 0	 A
9)x lt+?)dcp +	 x 1 (t+(p )Q l (t,Cp )x(t)dCp

P(t)X(t) + Xt 
(t ) f	 (t
r 

(14)	
0	

0+ f dcp f dpx I (t-Fcp ) R (t, cp ., p) x (t4j) = Z (xt , t)

However,

Z (XT, T) (XT) T) = 0

^*	 and

t Note that ^Vll (xt,t)/at also equals -x t (t)M(t)x(t)	 ut(t)N(t)u(t).

tt In fact, it is readily verified that
I

we only need that	 Q*"* (t,T)	 anc
R(t.,cp.,p) have uniformly bounded derivatives a. e,, in the	 (1, -1)	 and

directions on the sets	 t c [0, T], T e [-r,O]	 and	 t e [0,.T])
q) j,p C	 [-r,O], resp.	 More generally, for uniqueness we only need that
aR 

U	 and	 d2u (tJcp-t)/at(t J cp-t)/c)L- be uniformly bounded for almost
all	 cp, p.



].2

T
Z(xt,t)	 7(XrR) T)	 f 1X , (OM OS WS ) + u ► (s) v( )u(;;) ^^f^t

= vu (xt, 
t) - Vu (X 

T
o T)

or, equlval.ctltl.y

(15)	 Z(Xtlt) = Vu (Xt,t)•

Using the identity (15), the representat ions (14) and (8), and the con-

tinuity of the P, P, Q, Q, R, R, and symmetry of P, P and R, R, it is easily

shovm that Pu (t)	 P {t )^ Qu(t,) = Q(t, ), Ru (t,cp, P) = R(t,cp, p); thus

the uniqueness is proved. Q.F.D.

In the sequel, it will be helpful. to separate out the u-dependent

terms in the coef ficients of Pu, Qu and R  in (12b, c ) d) and to eliminate
N

the u-dependence of the kernels Ku and Ku in (10). Trite (12b, c ) d) as

dp (t)

(1 2;b	 a-u--- + At (t)Pu (t) + Pu (t)A(t) + Qu(t)o) + Qu(t)o)	 1,111(t)

^Q (t, ^)	 ^ (t,cp )

	

2u ( t̂ )c(t,cp ) + A ' (t )Qu (t) CP) + Qu(t)^)A(t) + 2^^.^ 	 - 2.^
(I 2c 	

+ R (t,(P,o) + R (t,O, T ) - _u	 U	 2 u ( t ^CP)

c

J

f

C' (t,)Qu(t, P ) + Q^ (t,)^ (t, P ) .^_,t,p̂  _	 ^^^ P)

(12d' 	
2R (t ^ p

, cp, p),— a
P
-----s--i--^ -- -Gu (t

where

1 In fact, uncloy, th ^ r ^ta]`er I yjtat}tc , s 	 of. the :Las l; footnote the e t1^11..'^ i,:i.r,bold. be twcori Qu , Q and Hu, R almost c:vcryi;hcrc: in (cps P) fox, each t.



M= Mu
 (t)+ R' (t)D' (t)Pu (t) + Pu (t)D(t)B (t)

u(t,m) = Lu (t,(p ) + Pu (t )D (t ) V"u (t ,T) + 2[ Fu(t )D' (t)qu(t,q))

+ Q l (t,cp)D(t)ru(t)3

G,U (t,cp, p ) = Gu (t)q, p ) + 1'7u(t,^)n' (t )Qu (t , p ) + u(t,^) (t)Pu (t , p).

The boundary conditions (13a, e) do not depend on u.

A
Theorem 2. Suppose the conditions of Theorem 1. Define Pul,

qu	i and Zu ^ as the terms in (9' ,14' ,11' ), or equ3.yalentl.y, the	 -

spective terms in (9) - (11) vilth K, K, Mus Lu and Gu replacing

N
Ku, Ku, Mu, Du and Gu, resp. Then

	

P (t) = E P . (t )	 (t (P) = E Q • (t,) R ( t 	 p) _	 (t	 p
U
	 1 u^.	 ^ u ^	

1 uz	
^ u > >	 l ui > > )

P (t) = f TK' (s ) t)M (s)K(s)t)ds

	

ul	 t	
u

T	 o

	

P (t)	 f ds f dTK' (S, t)z (a, r)K(s+T, t)

	

U2	 t	 r	 u

Pu3 (t) PI M

T	 o	 0
Pu4 (t) = f ds f arp f dpK' (s+cp,t)Gu(s,cp;p)K(s+p,t)

t	 -r -r

Qul (t,y) = fTdsK' (s)t)Mu(S)K(s,t,y)
t

T	 o

	

Qu2 (t ^ cP)	 f ds f dTK' (s, t)^U(s,T)K(s+,r,t,CP)
t	 -r

f	 K' (s,t)^u(s,t-s+q))dst
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S

x

T	 o
(10r')	 (t,cp) = f cis f drK' ( t+1r , t )P (S)T)K(s,t,(p)

t	 -r

T	 o	 o

	

Quit (t ) cp )	 f ds f da f dpx' ( s+a,t)Gu(s,a, p)K(s+p,t,(P)
t	 -r -r

(lOd')	 min[ t+cp4 r, T] as f of	 dax' ( s+a,t) Gu (s, C/} t - s4 (P)
t	 ,-r

(lla')	 R (t,(p,p)	 fTdsK"' ( s ) t , cp )M (s)K(s,t,p)ul	 t	 u

T	 a

	

R (t, q), p)	 f ds fdTK' (s,t)T)L (s, r)K(s+T O t ) p)u2	 t	 -r	 u

(llb')	 min[t+r+p, T]N
+ f	 K(s)t,(p)Lu(s)t-s+p)ds

t

(,llc')	 R	 (t,tp, p)	 R' (t, p)(p)
U3	 u

21	 O	 O N	 /!	 N
RuZF (t,cp ) p) = 

f
ds frda frdPK' ( s+a)t,cp)Gu(s,a,0)K(sa•P,t,p)

mxn[t+r+qa, t+r+p, T]^
(lld')	 + f	 Gu(s,t- s+Cp)t - s4-p)ds

t
min[t+r+p, T]	 o ti

+ f	 ds f daK' (s+a) t,cp)Gu (s ) a, t - s+p)
t	 -r

mint+r-^tp, T]	 o ^	 ti
+ j	 ds f dcx^(s,a,t-s+T)K(s+a)t,p)•

t	 -r

4

	

Proof. In the integrals (9) in the expression 	 Pui(t), replace
1

Ku and Ku by K and K, resp., and Mu, Lu, G  by Mu, Lu, Gu, resp.,

In Theorem 1, let u =— 0, Lo = Lu, M  = Mu, Go = Gu , With this replacement,

the Pua terms in (9) become the Pu i terms in (9 1 ). Then, by Theorem 1,
4

the Pui (t) are differentiable, and 	 Pui(t)	 Pu (t) satisfies (12b') (or
It
i

equivalently, (12b) ). Similarly for, Qui {t
)

cp)	 Qu (t )cp) and
1

Ii



r

3)

R (t ) p) p) v R (t ) T p). Then by the symmetry of P (t) and ^ (t ^u^	 u	 t	 t	 u	 u t, )

and the unJgneness part of 7'heorem 1, we have (17). Q.R.Z).

Theorem ^. Suppose that N(t), Ket), Ae(t)t B(t), C(t ,,cp)t D(t'

and Fu(t) and VU (toT ) satisfy e condit ions of Theorem 1. Then the

Pui ( t ),	 i (t ) CP) ana Rui (t ) cp, p) of (9) - (11) are contI nuousl y differ-

entiable in theIr arguments for O $ t T, -r	 9 pt -r $ p < Q, except

that the cp or p derivatives of Ru2 (t,cp t P) and Rua (t,cp, p) m y bn dis-

continuous  at 9 = P. however, Ru (t,cp, p) has	 cterivative i.	 (lt -1, -^.)

direction.

Proof. Since the evaluations are tedious acrid straightforward,

we give the details for one 'typical' teem only, namely Qu2(t,cp). We note

only that the asserted discontinuity in Rut arises from the latter term of

(1lb' ) and that it is easy to verify that	 applied to this

latter term yields a continuous function. For future reference note that

the discontinuity is uniformly bounded if the Lu are. Write

I

T o

Qu2`(t ) q)) = f f KU(s)t)Lu(s,T)Ku(s+T,t)cp)dsdT
t -r,

mint+r+cp, T]
f	 Ku(s)t)Lu(s)t-s+cp)ds.
t

Recall. that Lu(tj(p) = Du(t)N(t)Fu(t,c*

Denote the second terip of Qu2 (t,cp) by	 (t,cp) .

is continuous in (t,T) . Let t + r + cP > IT. Then

Observe that 2t

T	 OL
^3 ( t)T)/ aP = f Ku(s)t)-Zju(s,t-s+cp)ds

which is continuous, in (t,y) . For t + r + c < To we have



16

T

. (t,^p )f	 K. (t+r-1T t)T,,,(t+vq, ^ r )	 f Ku( s j t)^(s, t- s.1 )t

which is continuous in (t,q)) in the dos .red range. In addition,

Lu (t+rqq,-) -a 0 as 41; + r + ^p -a T. since F (t,cp) w-> 0 as t > T. Thus

P (t,q)) has cori nuuus cp derivatives for t,cp e [0,T]  x [ -r, 0] . The de-

tails for	 (t,ep) fL• are similar and are omitted.

Write the first term of Q,u2(t,cp) as

T
a (t,(p ) = f h(S )T t)ds

t

where

0
h(s,cp,t)	 f	 Ku(s)t)Lu(s,T)Ku(s+,r,t,cp)ds.

max(t-siq, -r)

If t - s 4- cp > 0, the lower limit is replaced by zero.

For each fixed t ? 0 let k(s,cp,t) satisfy (a): k(s, cp ) t) is

continuous on [t,T] x [-r,0]; (b): There is a hounded measurable function

kp (s R t) so that for each t and each s - not in some null set in [t,T],
T

k
T

,cp(s ) t) = ak(s,cp,t,)/k for almost all cp in [-r,0]; (c): 
t kP
(s,cp,t)ds

is continuous on [0,T] C [-r,0]. Then f k (s,cp,t)ds 	 c^^ ifTk(s)cp,t)ds
t T	 t

and is continuous on [0,T] x [-r,0]. Let k(s,cp,t) 	 h(s,cp,t), and note

that h(S)9)t) is continuous for each faxed t. Let t - s + cp < -r. Then
o

v^ (s,^,t) =	 t)/a T	 f Ku(s,t)Lu(s,z)-c-^-u-(s+T t.cp)ds which is con-
_r

tinuous in all three variables.

Naj, , let 0 > t	 s + cp > -r. Then

3

-91
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2 (s )	 ^'S­J hC t	 U	 U

+ 10

KU'(sJ9t)L
t - Z,1^ 1	

U

The first term of 6
2 (8 ) TO 

t) is zero since	 0 and the second

tends to 81 ( s )(P I'll t) as t - s + J. -r. It can now easily be verified that

(a) - (c) hold and that a(t,T) has a continuous cp derivative on [0, T] x

[-r.0]. The details for 6,-z(t, cp) / ok are similar and are omitted. Q.E.D.

4. Iteration in Policy Space.

In Theorem 4, the basic result on ' iteration in policy space', we

will require the time derivative of the function Vu (xt t) evaluated on the

path corresponding to a control w, (and written ^ulw (xt t)); to be specific,

the time derivative of Vu(x t,t) along the path corresponding to w is de-

fined by

	

LV)W(x 	 y[ x '

0
t)t) m	 (t)%(t)x(t) + 2x t (t) f 0, 

U 
(t,CP )x(t+CP )&P

_r

+ f f x 1 (t-fV )R 
U 

(t ., cp p p) x (t+ p) dp#

where for k(t) =_ cNr.(t)/)t we use the derivative evaluated along the trajectory

corresponding to w; i.e,)

0
:k(t ) = A(t)x(t) + B(t)x(t-r) + D(t)w(t) + f C(t,q))X(t4V)#.

-r

Us-ing (19) in the calculations (13), we have
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4	 0
vUpw (xt t) u 2W I (t)D(t)ru(t)x(t) + 2V' (t)D' (t) f Qu(t,(P)X(")

=r

-Yu(t)
. ^ (t)	 + Ai (t)Fu (t) + 1)u (t)A(t) + %(t,O) +	 (t,0) x(t)

0
• , (t)f	 / • l ) ,^(t,u^)	 U(t)C(t,q)

(19a)	 + At (t)Qu(t)(p) + Qu(t,^P)A(t)

+ Ru(t ,^P, O) + Ru(t,0,c)]X(t4<p)#

0 0

+ f f x, (tom	 ^p)Ru(tA) p)-r -r

+ c' (t,q))Qu(t, p) + Q' (t, q))C (t, p ) ]x(t+p)dq)dp•

Theorem I}. Let u have the form (5), and define VOW (xt^t) by

(18). Assume the conditions on A, B, C O D, Eu, Flu , N and M of Theorem 1,

and let N(s) be positive definite and M(s) positive semi-definite in

[0,T], any D(t) be continuously differentiable in [0,T]. The control

w which attains the minimum in (22) has the farm (51 and

0
(2a)	 w(t) = Fw (t )x (t ) + f Fw(t,CP)x(t4q)4

^.r

where

Ew(t)	
N-l (t)D , (t)Pu(t) '

Fw(vp) = -N I(t)D' (t)Qu(t,y)'.

4

p

1

Ew(t) and Fw(t,tp) satisfy the conditions on the Eu(t) and Fu(t,(p) in



t
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I
=YSf^RY=AIMlAlFl IIAO	 fY; ?. it<Tw

(21) VW (xt , q f Vu (Xt, t)

for	 x  e II, an'l t C ( 01 TI

(22) H(xt,t) " min [Vu) w (xt,t) + X ! (t)M(t)x(t) + w , (t)VT(t)w(t)
W

Remark. Note that, with w = u, the bracketed teen in (22) is

zero by the definition of ep a (xt) t) = aJu (Xt) t )/ Vii;.

Proof. Zt computing the minimum in (22), only the terms

0(t)pu(t)x(t) + x v (t)%(t)X(t)	 (t) ! Qu (t ^P)x(t+(P)CIrP
-r

(2>a)
+ w t (t)N(t)w(t)

or, equivalently, only the terms

a
2W I (t)D' (t)pu(t)X(t) + 2W I (t)b , (t ) .f Qu(tpP)X(t+q)&p

_r

(23b)	 + w+ (t)N(t)w(t)

need be token into account. The other temn in the brackets in (22) do

not contain w by (19a). The w(t) minJinizing (23b) is of the form

(20a), where EW and. rw satisfy (20b) By the hypothes is and by

Theorem 3M., the coefficientsents Ew and F  satisfy the smoothness

F
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conditions r %qui red in Tho-orem 1 on they EU, a there.

Now, for any w of the form (20), Vu (xV T) w VW (xV T) x 0

and

fTV'w(x .'t) - Vu(X T) - Vu (x t).
t	

^, ^/	 ^^	 t^

The "bracketed term in (22), with the minimizing w inserted, is non-

positive - since the bracketed term J.s zero if w is replaced by u.

Thus

a

0 9 j iu^ y(x , s) ds + f (x' (s)M(S)x(S) + w' (s)N(s)w(s) Jds
t	

s

or

0 a: Vu (xV T) - Vu (x,, t) + Vw(xt , t) - Vw(xT, T) = -Vu (xto t) + Vw(xt , t)

and (21) holds. Q.E.D.

Suppose the conditions on A. B, C, D, N and' M of Theorem 4.

Let uo satist'y the conditions in the remarx below Lemma 1. Define the

improved control u  recursively In terms of un l by the method of

	

Theorem	 Then, by Theorem 4 (where we write En = % , Fn = Vu

	

u	 n	 ri
Vn=Vn)

i
1

I
q
1!
AI

l^
^,.-...:.:.	 me.,...^^^:.....:._...	 '-:-Tr...-.r^^.âw`ez.-. ^..". «b.......»....,.:. _ 	 .:	 w.r..::i.. .w._..	 ,-3ti.4wi'^'adtw ... .._. .... ...	 .. .... ..	 _r:.>.	 ..	 ...	 ..	 _vvv..



i

I
I

r

PI

O
(211)	

U  
= Fn (t)x(t) + f Fn(t,)x(+)a.^

-r

En+l(t)	 -•N
-l

(t)D I (t)
Pn(t)

Fn+1 (t, cP) = -N (t)D' (t)%(t^cp)

and, for all t E (0,T] and xt c H)

(26) V'+I(xt, t) '.. t"N p t ) -

Next} it is shoi^m that (26) implies that the PnY QW Rn and

u converge.

Theorem 5. Assume the conditions of eorem It. The Pn(t),

Q'n (t ' ^P) ^ Rrl (t,rp) p) ) En (t), and Fn (t,p) are uniformly bounded and con-

verge Pointwise to Functions P(t) y Q(t,q)) ) R(t p cp ) p)^ E(t) and F(t^4)),

resp. P(t) and R(t,?, p) are Symmetric and

U	 oV (xt,t) = xi (t-.)P(t)x(t) + x' (t)f Q(t^ ^)x(t- }cirp

-r
0

(27) + f X' ( t+0Q ► (t))))x(t)#
_r

0 0
+ f f x I (t+q)R(. ,cp y p)x( t+p)dcPdp

where u is the li it of the un;

ft

I
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0
(28)	 u(t) }i^,. ° (t)X(t) + !	 '"` (t)'Y)X(tfq)4V

-r

Furthermore, the	 Vin,.___.
Gn	 and'n in (9 1 )	 (11 1 ) converge pointwise and

are uniformly bounded, any P, 0, and	 R	 are the limits of the	 w 4 :s

of the	 Pni, Qni	 and 'nip resp.

Finally, let	 v	 be the (1, -l)	 direction in the	 (t,cp)	 set

[0, T] X [ -r, 0], 	 and	 ar the	 (1, -]., -1) direction in the	 (t,1, p)	 set-

[0,T] X [-r,0] 2.	 Then the derivat ives aP(t)/at,	 ^Q(t,cp)^av,	 aR(t,cp,p)^c^

exist and satisfy

(29a) + A' (t)P(t) + P(t)A(t) + Q(t,0) + Q  (t, 0) = -M(t)

21-2— 2q(t	 + 2P(t)c(t,^D) + A' (t)Q( t ,p ) + Q' (t)^P)A(t)
(29b) ,.

+ R(t ) cp,0) + R(t,0,9) = - 2L(t)cp)

(29c) ,r3 
a t p p + c I (t, P )Q(t, p) + Q I (t,Cp)c(t, p) = -G(t,g, p)

1	 A
where_ the M,. L and G are the Mn,	 L with En and Fn replaced by

their limit. Also

B' (t)P(t) - Q(t, -r) = 0

(29d) B' (t )Q(t )(p )	 R (t, -r, )	 R' (t , cPs -r)

+ Q' (t )cp)B(t) = 0.

aPn(t)/ct, aqn (t,cp) f lv and aln (t^tp, p)^oor' converge to &(t)/at,

2)^(t,cp)/^v and 1R (t, q) , p)/ d)a, .resp.

I

k

n

it

it

(I i
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Proof. The other statements follow readily from the uniform

boundedness and convergence of the Pn, Qn and Rn and Th=eorems 1 and 2;

hence only tris will be shown.

We note only

(a/C&-a/cl^-a/ap)Rn(t)CP,,

if the Pn, Qn, and Rn

If the Pn, Qn and Rn

then the (t, r, c, resp. )

that (a/ch -a/ap)Qn(t,q) ' Ar2 'qn (t ,^P)/ car, and

D) ; 17 2Rn (t,(p , p)/&. These derivatives converge

do, and are uniformly bounded by (12) and (12 1 ) .

and their (t,v,cr, resp.) derivatives all converge

derivatives of the limits vre the limits of the

1
I
I
I
I

(%r,or, resp.) derivatives. In (26), let x(t+^p) = 0 for q / 0. Then (26)

implies that x' Pr,*l (t)x ;5 x' Pn (t)x for any vector x. Hence, Pn (t) con-

verges pointwise to a symmetric measurable matrix P(t). Since the diagonal

elements 
pn, 

ii (t) are non-increasing, and 1pn,,Ji (t) j :-5 max pn' ii (t), the
i

P 1 (t) are uniformly bounded.

	

Let x(y) be any continuous function on [.-r,0] with x(0) 	 0.

Then, for such x(cp), (26) implies that

0 0	 0 0

(30) f f X 1 (9)R n+l (t,cp, p)x(p)dcpdp s f f x ' (9) Rn (t ,T, p)X(p)&pdp•
-r -r	 -Cr -a

By the continuity of the Rn (t, 9 , p), (30) holds if x (cp) is a Dirac

5-function. in particular, if -r < qi o < 0' -r < po < 0 and x (g)

xb(q"-^p o) + yS(?-po)^ then (30) and the fact that R' (t,cp, p) 	 Rn(t ) p,(p)

y=ields

x'Rn+1 (t :q) Q y,!)o)x + y' Rn+l( t) ()00 Po )
y + 2x' Rn+1 (t ) 7'o, po)y

(31) s x'Rn(t,cPo,cpo)X + y 'Rn (t ) po) po )Y + 2K'Rn (t,q) o , po)y

3

MaNNUMMIP- __
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But, by continuity of the Rn (t )cp, p), (33.) holds for any q) 00 pQ In [-r,0].

Let y : 0. Then, as shovnz for the Pn, (31) implies that the Rn(t)(P)cp)

are uniforml y bounded and converge to some R (t,cp,T) . Using this and (32.)

and the arbitrariness of x,y implies that the R n (t,T,p) are uniformly

bounded and that Rn (t,cp,P) converges to some R(t,cp,p). By similar reason-

ing, (2G) implies ghat, for each cpo e [ -r, 0],

x' Pn+I (t)x + 2x' 
Qn+l (t '^o )y + y^ Rn+l('..ppopcpo)y

(32)

x' Pn (t)x + 2x' Qn (t,cpo )y + y' Rn(t,cpo)cpo)y.

Using (3,) and the conclusions concerning P n and Rn, we may deduce that

the Qn+l (t )
cp) converges to some Q (t,T) and ay e uniformly bounded. Q.E.D.

Corollary. For any control w(t) which gives bounded continuous

paths x(t), and which is bounded for any bounded continuous initial condition
.0 w

Vu ^ w (xt, t) exists and V n' (xt , t) converges to i.t for any continuous initi al

condition. The class of w(t) includes all, controls which are linear in xt

and have bounded coefficients.

• u, w
Note. Recall that V (xt,t) is the time derivative of V

u 
(xt,t)

along xt paths corresponding to the control w.

u
Proof. Since V n (xt,t) converges to Vu(xt,t) for any continuous

u ,w
initial condition, we only need to show that V n (xt,t, is uniformly bounded

(in n) and converges for any continuous initial condition. V un'w(x t) isti,
u w

given by (19a) with un replacing un, and Theorem 5 implies that V n' (xt,t)
converges.

s
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5. The Optimality Theorem.

Theorem 6. Let w(x,t) be any Pontrol for which a solution tn

(1) 3! defined on [0,T] for any initial condition, and let a bed

by (28) . Then Vu (xt, t) ;i vw (xt, t) fo^ t, and initial conditions xt.

Let u = W and Eu and Fu be given by (28). Then the set of equations

has a unique solution for symmetric P(t)  and R t p	 and de-

termines the optimal control w.

Proof. Calculating the minimizing w in (32) (see Theorem h for

terminology)

r

(32)	 min [V (xt,t) + x t (t)M(t)x(t) + w t (t)N(t)w(t)]

yields (see (19a))

0
w (XV t ) = -N`1 (t ) D ' (t)[P(t)x(t) t l Q(t)0x(t+rP)#1,

which is exactly u. Also the bracketed term in (32) is zero if u replaces

W. Thus, for any u w, we have

i

Vu'w(xt)t) + x ► (t)M(t)x(t) + wt (t)N(t)w(t) ;-->,O

or

T. u w	 T
5	 f	 t	 t	 ^	0 , ^ v	 (xs ,$)d's -+ t [x (s)M(s)x(s) + w (s)N(s)w(s)]ds

	

u	 w	 ,
-v (xt't)	

u 
(xT, T) + v (xt^ t) - vw (xT' T)
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or, equivalently,, Vw (xt,t) ;r Vu (Xt,t). The last sentence of the Theorem

follows from Theorems 5 and 2. Q.E.D.

f
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